書評:Shocks, Crises, and False Alarms: How to Assess True Macroeconomic Risk

2025/4/20

Shocks, Crises, and False Alarms: How to Assess True Macroeconomic Risk Philipp Carlsson-Szlezak, Paul Swartz Shocks, Crises, and False Alarms: How to Assess True Macroeconomic Risk  本書はマクロ経済における近年見られたような、ショック、危機などのリスクを案内します。  マクロ経済のリスクを判断するとき、リスクが実際のショック ...

ReadMore

合衆国の新関税の税率と貿易収支

2025/4/17

2025年4月2日に合衆国の新しい関税の税率が公表されました。現在の貿易収支の状況と導入される関税の税率をまとめます。 合衆国の貿易収支 図1 合衆国の貿易収支2023年(単位:USD million)  図1は、左側が輸出国、右側が輸入国です。マウスポインタを領域の上に置くと、輸出入額(単位:100万USドル)を表示します。 データソースはJETROがまとめている貿易投資年報より参照。 新関税の税率と各国の対米貿易収支 図2 関税税率と対米貿易収支 対米貿易収支は、輸出額から輸入額を減算した値(単位:1 ...

ReadMore

強化学習による因果探索 gCastle因果探索アルゴリズムの検証(3)

2025/3/18

gCastleに実装された探索アルゴリズムの中で、強化学習を使ったアルゴリズムが高い性能を示しています。本稿ではこの探索のための強化学習アルゴリズムを解説します。 強化学習を使った探索  強化学習は一般的にポリシーを学習することを目的に用いられますが、彼らはこれをDAGの探索に使っています。  巡回セールスマンの問題と同様に、d次元のnシーケンスでベストスコアを導くことで、入力データからバイナリの隣接行列の生成を考えます。  隣接行列を出力するためにエンコーダ/デコーダ・モデルを作りますが、エンコーダ自己 ...

ReadMore

CastleBoardの使い方 gCastle因果探索アルゴリズムの検証(2)

2025/3/2

中国のAI技術動向の調査を兼ねて、gCastleに実装された因果探索アルゴリズムを検証しました。gCastleはGUIツールCastleBoardを含んでいますが、パッケージにツールのマニュアル類は添付されていません。そのため、本稿では実際にアルゴリズムを検証するためのCastleBoardの使い方について解説します。 CastleBoardの操作  GUIツールはいくつかの設定項目への入力でテストデータを生成できるため、テストプログラムを組むより簡単にアルゴリズムを検証できます。ツールの機能は主に二つの ...

ReadMore

マイニング・セクターのリスク許容度、関税の影響 (DoubleMLの推論)

2025/3/14

 2025年2月に合衆国の新政権の政策として、鉄鋼とアルミニウムに25%の関税が課されることが決定されました。一方で、ウクライナへのこれまでの支援の対価として、ウクライナの鉱物資源などの天然資源の権益取得が交渉されています。  この関税政策が、原料である鉄鉱石やボーキサイトなどの鉱物資源の採掘を行なっている企業に与える影響について分析します。  分析手段として機械学習を使った推論手法、DoubleML(Double Machine Learning)を用います。このDoubleMLという推論手法と同じ名称 ...

ReadMore

gCastle 因果探索アルゴリズムの検証

2025/2/28

gCastleは、因果探索アルゴリズムが実装された因果の構造を学習するツールチェインです。パッケージは、Webアプリを含んでおり、因果探索アルゴリズムがGUIベースの操作で検証できるようになっています。 gCastle 概要  Huawei社のリサーチラボから提供されています。因果探索アルゴリズムが実装されており、Webアプリを使用してアルゴリズムの動作が検証できます。  GCastleの名称は、Gradient-based Causal Structure Learning pipeline. の頭文字 ...

ReadMore

クレジット・カードの種別と利用額の最適化 YLearnによる因果推論(2)

2025/2/20

YLearn因果推論パッケージを使ったケース・スタディを使ってYLearnの機能を解説します。YLearnの因果推論パイプラインを使ったマーケティング上の分析の一つになります。クレジット・カードのグレードを更新した場合の効果の推論です。 機能と仕様  以下、簡単に機能をまとめ、最後にケーススタディを使って動作を確認します。ケース・スタディでは、Kaggleの実際のデータセットを使います。 DAG グラフと交絡因子  観測されていない変数はconfounding arcとして定義し、下の図1では(黒の点線) ...

ReadMore

YLearnによる因果推論(1) 概要とセットアップ

2025/2/20

 因果推論はAIシステムが、イベント間の真の因果関係をよりよく理解する助けになります。中国製のLLMが最近、話題(注1)になっていたので、データサイエンス分野で中国の因果推論に関する取り組みとツールについて評価します。  因果推論や因果探索のツールとして、Huaweiが提供しているgCastleと、因果探索・因果推論ツール、ylearnを使います。gCastleはPyTorchで実装された因果探索パッケージです。因果関係に関連した代表的なアルゴリズムが実装されて、検証ツールが提供されています。Huawei ...

ReadMore

Jupyter-notebookがAnaconda Navigatorから起動できない問題

2025/2/6

新しいAnaconda Navigatorをインストールしたところ、jupyter-notebook(7.3.2)がNavigatorから起動できない問題がありました。 Navigatorのエラーメッセージは、次のようになっています。 【The file /Users/xxx/anaconda3/bin/Jupyter_mac.command does not exist.】 jupyter_mac.command does not exist.  問題は、インストールまたはNavigatorが参照してい ...

ReadMore

Apple Silicon Mac 用 Anacondaバージョン更新・インストール

2025/2/5

Apple Silicon用に新しいバージョンのAnacondaがリリースされていたので、Navigatorの更新を兼ねてインストールします。 (Mac OSの更新(Sequoia15.3)によって、使用中のNavigatorが起動しなくなったため) Anaconda Navigatorのインストール  以下のAnacondaのサイトにアクセスします。最近のAIに対する、人と資本、計算リソースの流れを反映した画面に様変わりしています。 https://www.anaconda.com  【1】画面左上のP ...

ReadMore

システム 書評

書評:Essential Math for AI

Essential Math for AI:Next-Level Mathematics for Efficient and Successful AI Systems

Hala Nelson

Essential Math for AI:Next-Level Mathematics for Efficient and Successful AI Systems

 本書は、機械学習に関してトピックごとに関連する数学が挿入してあります。数学の理論や証明、プラミングコードは記述してありません。

 読者として、数学を専門にするものだけでなく、データサイエンティスト、AI、機械学習エンジニア、技術の倫理的な問題に関わる思索者、AIやデータ分析を業務に組み入れたいと考える管理職、他の領域を専門とするAIに興味のある人々を対象にしてあります。

 本書で取り上げているAI・機械学習の主なトピックは以下のようなものです。

  • 一般的なトレーニング関数、損失関数、最適化
  • 画像認識とCNN
  • SVD(主成分分析と次元の縮約)と画像処理、自然言語処理
  • 自然言語処理に関する量子化と時系列分析
  • 確率的な生成モデル
  • グラフモデル
  • オペレーション・リサーチ
  • 因果関係におけるPearlのdo-calculas
  • AIと偏微分方程式

 情報処理のシステムとして、ルールをプログラムし、それらの予めプログラムされたルールに基づいて、決定し、結論を得る代わりに、機械学習はデータからルールを推論します。そのため機械学習では、最初にデータが必要になります。

 一般的なアルゴリズムの構成法は、問題を識別してモデルを作り、データに関数を適合させます。

 ニューラルネットの最適化には確率勾配下降法が用いられますが、これは類書でも多く解説されています。

 本書で取り上げているユニークなテーマとして、オペレーション・リサーチや偏微分方程式に独立した章が割り当てられています。

 ニューラルネットでは任意の関数を再現できることがわかっています。偏微分方程式の章では、ニューラルネットワークは、任意の関数を無限の次元の空間にマッピングして近似することができ、どのような非線形の連続した関数でも近似することができるということなどが記述されています。

 各トピックに沿って、概念の説明に数学が用いられています。

 各章のトピックは独立しており、初めの章から順番に進める必要はないので、興味のあるテーマから読める構成になっています。

 教養として技術的背景にある数学を知るには良いでしょう。より深く技術を把握しておきたければ、Kindle版は本文中に関連資料へのリンクが貼ってあるので簡単に参照することができます。

-システム, 書評
-,